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1 Tensor Product Representations, Character Tables, and
Orthogonality Relations for Characters

1.1 Tensor product representations

Let G be a group, and let V, W be F-representations of G. We can form representations
on

e VarW: glvew)=gv® gw and extended linearly.
o Homp(V,W): (g-¢)(v) = gp(g~'v).
Lemma 1.1. Let G be a group, and let V,W be F-representations of G.
1. Xverw = XVXW
2. XHomp(V,W) = XV * Xw, and Xy (g) = xv(g™h).
Definition 1.1. If G is finite and char(G) J( |G|, then we have pairing on characters of G:
(6x) =@ Z X(g
geG

By the lemma,

06X =1 ZXHomF vy (9)-
geG

Proposition 1.1. Let V,W be finite dimensional F-representations of G. Then
<XV7 Xw> = dimF HOHIF[G} (V, W)

Lemma 1.2. Let V be a finite dimensional F-representation of G. Then

dim g ( VG |G! ZXV
geG



Here is the proof of the lemma.

Proof. Let

1

with €2 = e. Then let T : V' < V. The minimal polynomial of T divides 2> — 2 = 2(x — 1).
So T is diagonalizable, and the trace of T is the sum of the eigenvalues, which must all be
0 or 1. So tr(7) is the number of eigenvalues which are 1, namely dim(E;(T)).

Now observe that if ev = v, then gv = gev = g‘—(l;'NGv =ececv=wforall g e G. So

Ey(T) CVC. If gv = v for all g € G, then

L v L

— Ngv = Glv = v,
a Ve = i€

eV =

sov € Ey(T). So E1(T) = VE. Then xy can be extended to xy : F[G] — F, and
xv(e) = tr(py(e)) = tr(T) = dimp (Ey(T)).

By definition, we have

1
xv(e) = 1€l > xv(@).

geG

Now set these equal. ]
This now implies the proposition.

Proof. Observe that by the definition of the action of G © Hompg(V, W), Hompg(V, W) =

Homp(V, W)€, O

1.2 Character tables

Let G be finite, let g1, ..., f be representatives of conjugacy classes of F', and let x1, ..., Xr
be irreducible complex repreesntations of GG. Let y; correspond to the representaiton V;
with dimg(V;) = n,.

Definition 1.2. The character table of G is a matrix in M, (C) with (7, j)-entry x;(g;).

Example 1.1. Here is the character table for Ss:

S3 lel(12)](123)
xi |1 1 1
ngn 1 -1 1
x3 |2] 0O -1




Example 1.2. Here is the character table for Z/nZ:

Z/nZ|1| 1 2 el n—1
1 1 1 1 ce 1
x 1] ¢ ¢ et
X2 1 C2 C4 . C2(n—1)
Xn—l 1 Cn—l C2(n—1) . C(n—l)2

1.3 Orthogonality relations for characters

Lemma 1.3. Ket x be a C-valued character of G with degree d, |G| = n, and let g € G.
Then x(97") = x(9), x(9) € Z|p], and |x(g)| < d.

Proof. Let x correspond to p: G — Autc (V) = GL4(C). Then ¢g" = e, and we can choose
an isomorphism such that p(g) is diagonal. So p(g)" = id, which means that the entries of
p(g) are in pi,. If ¢ € pip, then ¢ = (71, so

x(g7h) =tr(x(9)™") = tr(p(9)) = x(9)-

Finally, we have that x(g) is the sum of d n-th roots of unity. O

Definition 1.3. An inner product on a C-vector space V is an additive pairing (-, ) :

V x V — C such that (av,w) = av,w and (v, fw) = f (v,w) for all a, 8 € C.

Definition 1.4. An inner product is positive definite if (v,v) > 0 for all v € V and
(v,v) =0 <= v=0.

Definition 1.5. An inner product is Hermitian if (v, w) = (w, v)

Definition 1.6. A basis B of V is orthonormal if (v, w) = d,,, for all v,w € B.

Definition 1.7. A finite dimensional C-vector space with a Hermition pairing is called an
inner product space.

If ¢1,...,v, is a basis of a complex inner product space, let A be the matrix A4;; =

(vi,vj). Then A = A . It can be diagonalized by a unitary matrix (a matrix with
BB =1,).

Definition 1.8. An inner product on a C-representation of G is G-invariant if (gv, gw) =
(v,w) for all g € G.

Lemma 1.4. There is a positive definite, Hermitian inner product on the space of C-valued
class functions on G given by

= & 2 0@ 0a).

geG

(6,9)

3



Theorem 1.1 (first orthogonality relation). The set of irreducible complex characters of
G forms an orthonormal basis for the space of class functions.

Proof. By Schur’s lemma and our lemma from before,
<Xi7 Xj> = dimC(HomC[G] (‘/27 ‘/J)) = 5’i:j‘ o
If we have rows r;, 7 in the character table,

. T
1
T = g > eixilg)xir(9));
=1

where ¢; is the order of the conjugacy class of g;.

Theorem 1.2 (second orthogonality relation).

- Zy| hecC
;Xi(g)Xi(h) = {’0 2 L Z sz

where Zg is the centralizer, Vy is the conjugacy class of g, and |Zg| = n/|Cy|.

Proof. Let A be the matrix with A; ; = xi(g;) (i-e. the character table). Let C' be diagonal
with (i, j)-entry ¢; = |Cy,|. THen

7T r .
(ACA )ij = xi(gr)erX;(gr) = 6i
k=1

al.

The left hand side also equals

T

(ACA)i; = (A" AC);,; = > xi(90)xk(g5)es.
k=1

So we get

> xulgi)xn(gy) = {|Z9i| 9 =9 O

P 0 otherwise.
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