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1 Tensor Product Representations, Character Tables, and
Orthogonality Relations for Characters

1.1 Tensor product representations

Let G be a group, and let V,W be F -representations of G. We can form representations
on

• V ⊗F W : g(v ⊗ w) = gv ⊗ gw and extended linearly.

• HomF (V,W ): (g · ϕ)(v) = gϕ(g−1v).

Lemma 1.1. Let G be a group, and let V,W be F -representations of G.

1. χV⊗FW = χV χW

2. χHomF (V,W ) = χV · χW , and χV (g) = χV (g−1).

Definition 1.1. If G is finite and char(G) - |G|, then we have pairing on characters of G:〈
χ, χ′

〉
=

1

|G|
∑
g∈G

χ(g)χ′(g).

By the lemma, 〈
χ, χ′

〉
=

1

|G|
∑
g∈G

χHomF (V,W )(g).

Proposition 1.1. Let V,W be finite dimensional F -representations of G. Then

〈χV , χW 〉 = dimF HomF [G](V,W ).

Lemma 1.2. Let V be a finite dimensional F -representation of G. Then

dimF (V G) =
1

|G|
∑
g∈G

χV (g).
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Here is the proof of the lemma.

Proof. Let

e =
1

|G|
NG ∈ F [G]

with e2 = e. Then let T : V
e−→ V . The minimal polynomial of T divides x2−x = x(x−1).

So T is diagonalizable, and the trace of T is the sum of the eigenvalues, which must all be
0 or 1. So tr(T ) is the number of eigenvalues which are 1, namely dim(E1(T )).

Now observe that if ev = v, then gv = gev = g 1
|G|NGv = ev = v for all g ∈ G. So

E1(T ) ⊆ V G. If gv = v for all g ∈ G, then

ev =
1

|G|
NGv =

1

|G|
|G|v = v,

so v ∈ E1(T ). So E1(T ) = V G. Then χV can be extended to χV : F [G]→ F , and

χV (e) = tr(ρV (e)) = tr(T ) = dimF (E1(T )).

By definition, we have

χV (e) =
1

|G|
∑
g∈G

χV (G).

Now set these equal.

This now implies the proposition.

Proof. Observe that by the definition of the action of G � HomF (V,W ), HomF [G](V,W ) =

HomF (V,W )G.

1.2 Character tables

Let G be finite, let g1, . . . , fr be representatives of conjugacy classes of F , and let χ1, . . . , χr

be irreducible complex repreesntations of G. Let χi correspond to the representaiton Vi
with dimF (Vi) = ni.

Definition 1.2. The character table of G is a matrix in Mr(C) with (i, j)-entry χi(gj).

Example 1.1. Here is the character table for S3:

S3 e (1 2) (1 2 3)

χ1 1 1 1

χsgn 1 −1 1

χ3 2 0 −1
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Example 1.2. Here is the character table for Z/nZ:

Z/nZ 1 1 2 · · · n− 1

1 1 1 1 · · · 1

χ 1 ζ ζ2 · · · ζn−1

χ2 1 ζ2 ζ4 · · · ζ2(n−1)

...
...

...
...

. . .
...

χn−1 1 ζn−1 ζ2(n−1) · · · ζ(n−1)
2

1.3 Orthogonality relations for characters

Lemma 1.3. Ket χ be a C-valued character of G with degree d, |G| = n, and let g ∈ G.
Then χ(g−1) = χ(g), χ(g) ∈ Z[µn], and |χ(g)| ≤ d.

Proof. Let χ correspond to ρ : G→ AutC(V ) ∼= GLd(C). Then gn = e, and we can choose
an isomorphism such that ρ(g) is diagonal. So ρ(g)n = id, which means that the entries of
ρ(g) are in µn. If ζ ∈ µn, then ζ = ζ−1, so

χ(g−1) = tr(χ(g)−1) = tr(ρ(g)) = χ(g).

Finally, we have that χ(g) is the sum of d n-th roots of unity.

Definition 1.3. An inner product on a C-vector space V is an additive pairing 〈·, ·〉 :
V × V → C such that 〈αv,w〉 = αv,w and 〈v, βw〉 = β 〈v, w〉 for all α, β ∈ C.

Definition 1.4. An inner product is positive definite if 〈v, v〉 ≥ 0 for all v ∈ V and
〈v, v〉 = 0 ⇐⇒ v = 0.

Definition 1.5. An inner product is Hermitian if 〈v, w〉 = 〈w, v〉

Definition 1.6. A basis B of V is orthonormal if 〈v, w〉 = δv,w for all v, w ∈ B.

Definition 1.7. A finite dimensional C-vector space with a Hermition pairing is called an
inner product space.

If c1, . . . , vn is a basis of a complex inner product space, let A be the matrix Ai,j =

〈vi, vj〉. Then A = A
>

. It can be diagonalized by a unitary matrix (a matrix with

BB
>

= In).

Definition 1.8. An inner product on a C-representation of G is G-invariant if 〈gv, gw〉 =
〈v, w〉 for all g ∈ G.

Lemma 1.4. There is a positive definite, Hermitian inner product on the space of C-valued
class functions on G given by

〈θ, ψ〉 =
1

|G|
∑
g∈G

θ(g)ψ(g).
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Theorem 1.1 (first orthogonality relation). The set of irreducible complex characters of
G forms an orthonormal basis for the space of class functions.

Proof. By Schur’s lemma and our lemma from before,

〈χi, χj〉 = dimC(HomC[G](Vi, Vj)) = δi,j .

If we have rows ri, ri′ in the character table,

ri · ri′ =
i

|G|

r∑
j=1

cjχi(gj)χi′(gj),

where cj is the order of the conjugacy class of gj .

Theorem 1.2 (second orthogonality relation).

r∑
i=1

χi(g)χi(h) =

{
|Zg| h ∈ Cg

0 h /∈ Cg,

where Zg is the centralizer, Vg is the conjugacy class of g, and |Zg| = n/|Cg|.

Proof. Let A be the matrix with Ai,j = χi(gj) (i.e. the character table). Let C be diagonal
with (i, j)-entry ci = |Cgi |. THen

(ACA
>

)i,j =
r∑

k=1

χi(gk)ckχj(gk) = δi,j |G|.

The left hand side also equals

(ACA
>

)i,j = (A
>
AC)i,j =

r∑
k=1

χk(gi)χk(gj)cj .

So we get
r∑

k=1

χk(gi)χk(gj) =

{
|Zgi | gi = gj

0 otherwise.
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